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The stability (i) of fully three-dimensional magnetostatic equilibria of arbitrarily 
complex topology, and (ii) of the analogous steady solutions of the Euler equations 
of incompressible inviscid flow, are investigated through construction of the second 
variations d2M and P K  of the magnetic energy and kinetic energy with respect to 
a virtual displacement field q(x)  about the equilibrium configuration. The expressions 
for P1M and P K  differ because in case (i) the magnetic lines of force are frozen in the 
fluid as it undergoes displacement, whereas in case (ii) the vortex lines are frozen, 
so that the analogy between magnetic field and velocity field on which the existence 
of steady flows is based does not extend to the perturbed states. It is shown that the 
stability condition PM > 0 for all q(x) for the magnetostatic case can be converted 
to a form that does not involve the arbitrary displacement q(x) ,  whereas the condition 
S2K > 0 for all q for the stability of the analogous Euler flow cannot in general be 
so transformed. Nevertheless it is shown that, if PM and PK are evaluated for the 
same basic equilibrium field, then quite generally 

d2M+S2K > 0 (all non-trivial q) .  

A number of special cases are treated in detail. In particular, it  is shown that the 
space-periodic Beltrami field 

BE = (B,  cos az + B, sin ay, B, cos az + B, sin az, B, cos ay + B, sin 01%) 

is stable (i.e. P M  > 0 for all q) and that the medium responds in an elastic manner 
to perturbations on a scale large compared with a-l. By contrast, it  is shown that 
P K  is indefinite in sign for the analogous Euler flow, and it is argued that the flow 
is unstable to certain large-scale helical perturbations having the same sign of helicity 
as the unperturbed flow. It is conjectured that all topologically non-trivial Euler flows 
are similarly unstable. 

1. Introduction 
In a previous paper (Moffatt 1985, hereafter referred to as M85), the existence of 

magnetostatic equilibria, and hence of analogous steady Euler flows has been 
established, through consideration of the relaxation of a magnetic field B(x, t )  in a 
perfectly conducting, but viscous, fluid contained within a bounded domain 9 with 
fixed boundary 39. The magnetic energy stored in an arbitrary initial field BJx) is 
converted to kinetic energy of motion and hence, via viscous dissipation, to heat. 
However, if the topology of the magnetic field is non-trivial, topological constraints 
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place a lower bound on the magnetic energy, and the system asymptotes to a 
magnetostatic equilibrium BE(x)  satisfying 

(1.1) 
j E x B E = V p E ,  j E = V x B E ,  V * B E = O  i n 9 ,  

n - B E = O  o n d 9 ,  

for some scalar (pressure) field p E ( x ) .  An essential property of the magnetostatic 
equilibria satisfying ( 1 . 1 )  is that  they may contain tangential discontinuities of BE 
(i.e. current sheets) imbedded within 9 (as well as on the boundary B), even 
although the initial field B,,(x) is everywhere differentiable (C1).t 

The physical nature of this relaxation process implies that, in general, the 
equilibrium described by ( 1 . 1 )  should be stable with respect to small displacements 
of the fluid which conserve the ‘frozen-in’ character of the magnetic field, since 
otherwise the decrease in magnetic energy by the above mechanism may (and in 
general will) continue. Thus we expect that the magnetic energy should be a minimum 
with respect to small frozen-field perturbations, and this should be true even if the 
equilibrium field involves current sheets. We are of course ignoring here the 
possibility of resistive instabilities which may occur as a result of the finite 
conductivity of real fluids. 

To each magnetostatic equilibrium BE(x) ,  there corresponds, via the analogy 
BE(x)  * uE(x), a solution of the steady Euler equations 

uE x mE = VhE,  o = V x uE, V*uE = 0 in 9, n.uE = 0 on i39, (1.2) 

describing the steady flow of an inviscid incompressible fluid within 9. Note here that 
9 may be simply or multiply connected, and that a 9  may consist of several disjoint 
parts. 

As emphasised in M85, the analogy between magnetostatic equilibria and Euler 
flows exists only for the steady states, and does not extend to questions of stability 
about these steady states. Thus, the fact that  a magnetostatic equilibrium is stable 
is no guarantee that the corresponding Euler flow is stable. Indeed, if current sheets 
are present in the former, then vortex sheets are present in the latter, and these are 
likely to be unstable by the Kelvin-Helmholtz ideal-fluid instability mechanism. 

Our aim in this paper is t o  investigate the relationship, if any, between the two 
stability problems. We shall show in fact that  there is an interesting complementarity 
between the two problems, with some points of comparison, and also, as expected, 
some vital differences. The natural tools for this investigation are certain variational 
techniques, developed in the magnetostatic context by Bernstein et al. (1958), and 
in the Euler flow context by Arnol’d (1966~) .  These techniques differ in the two 
contexts in a rather subtle manner. We shall therefore develop them ab initio here, 
in order to  highlight points of comparison and points of contrast. We shall then 
illustrate the techniques for three distinct field (or flow) geometries: (i) the two- 
dimensional situation; (ii) the stability of a cylindrically symmetric field (and of its 
Euler-flow analogue) to axisymmetric disturbances; and (iii) the stability of the 

t It is conceivable, as pointed out by a referee, that the general magnetostatic equilibrium (and 
therefore the general analogous Euler flow) may have a more complex structure than indicated here; 
e.g. tangential discontinuities may conceivably be stacked on top of each other in such a way that 
the field is almost nowhere differentiable. While accepting this possibility, we restrict attention in 
this paper to fields BE that have at most a finite number of discontinuities per unit length on any 
straight line transversal. The current densityjE has a &function structure at each such discontinuity, 
and volume integrals such as (2.21) below must be interpreted in the obvious way when such 
discontinuities are present. 

1 



Magnetostatic equilibria and Eulerjows of complex topology. Part 2 361 

FIGURE 1.  Relationship between <(x, 7 )  and q ( x )  (we (2.5)). 

space-periodic Beltrami flows, whose structure has recently been investigated by 
Dombr6 et al. (1986). 

In general, the results are consistent with the conjecture, hinted at in M85, and 
now made explicit here, that a three-dimensional Euler flow of any significant 
complexity is in general unstable; in the language of dynamical systems these Euler 
flows may be regarded as the unstable fixed points in the function space in which 
solutions of the unsteady Euler equations evolve. Intrinsic instability of complex 
three-dimensional flow in the inviscid limit is of course one of the hallmarks of 
turbulence; and it is very much with an eye to application in the turbulence context 
that this investigation, which might otherwise seem somewhat artificial, is pursued. 

2. Stability of magnetostatic equilibria 
The magnetic energy associated with a field distribution B(x)  is 

M = -  P d V ,  
2 'I 

and the equilibrium BE@) satisfying ( 1 . 1 )  will be stable if the corresponding energy 
ME is minimal with respect to small displacements of the fluid in .9 which perturb 
the field in a ' frozen-field' manner. We restrict attention to incompressible fluids, and 
suppose that the displacement occurs through the action of a steady solenoidal 
velocity field u(x)  (V*u  = 0, n. o = 0 on 8.9) which acts during a small time interval 7.  

Let {(x, t )  be the displacement of the fluid particle initially at  x; then 

(2.2) 
a4 - = u(x+<) = U(X)+{'VU+ ..., 
at 

so that [(x, 7 )  = ~ ~ ( X ) + + ~ ~ ~ ' V U + O ( T ~ ) .  (2.3) 

Equivalently a x ,  7 )  = rtw +wv+ o(r31, (2.4) 

where ~ ( x )  = m ( x ) .  Equation (2.4) may of course be inverted to give 

W )  = <-K'v<+o([3), (2.5) 
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so that q(x)  may be regarded as determined by the displacement field. We shall in 
fact refer to q(x )  as the 'displacement field' from now on, although strictly this is 
correct only a t  linear order. The relationship between q ( x )  and {(x, 7) is indicated 
in figure 1. Note that q satisfies 

V * q = O ,  q * n = O  ona9.  (2.6) 

A function q(x) ,  satisfying these conditions will be described as a 'kinematically 
admissible displacement field ' (Arnol'd 1966a). 

Now the frozen-field equation for B(x,  t) is 

= V x (u(x)  x B) ,  
aB 
at 
- 

so that, for 0 < t < 7 ,  

aB 
- = V X { U ( X )  x (BE(x)+ tVx  ( u ( x ) x B ~ ) + . , . ) } .  
at 

Hence the perturbed field at time 7 is 

B(x, 7 )  = BE@)  + S'B+ S2B+ 0(q3) ,  (2.9) 

where S'B = V x (q  x BE), (2.10) 

S2B = iV x (q  x S'B). (2.11) 

From (2.1), the perturbed magnetic energy is then 

M = M E  + S'M + S2M + 0(q3) ,  

where 6'M = BE'SIBdV, I 
S2M = J[(S1B)2 + 2BE PB] d V.  

(2.12) 

(2.13) 

(2.14) 

All volume integrals are over the domain 9, and all surface integrals are over a 9 .  

that is a field of the form 
There is one trivial displacement field which we should immediately dispose of, and 

q(x )  = a(x )BE(x)  with BE*Va = 0, (2.15) 

which certainly satisfies (2.6). For this field, 

S'B = 0, S2B = 0 and so S2M = 0 also. 

This displacement along the field lines does not distort the field in any way, and 
therefore does not change its energy; the field is therefore neutrally stable to such 
displacements. The same is evidently true for the wider class of displacement fields 
satisfying 

V x ( q x B E ) = O  i n 9 .  (2.16) 
We shall describe such displacement fields as trivial with respect to BE@),  and in 
what follows, we restrict attention to the more interesting non-trivial fields for which 
SIB =l= 0.  

We expect of course that M must be stationary for small variations about 
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magnetostatic equilibrium, i.e. that SIM = 0. This is easily verified: note first that, 
using n*BE = n-q = 0 on B, 

lV-[BE x (q x BE)] dV = n*[BE x (q  x BE)]dS = 0, (2.17) 

and 

Hence 

(2.18) 

S1 M = BE V x (q x BE) d V = (V x BE) * (a x BE) d V I 
- --[(jExBE).qdV=- s q*VpEdV=O. (2.19) 

I 
Consider now the expression for S2M: 

62M = - [(S1B)2+BE*V x (11 x GIB)]dV, (2.20) 
2 's 

so that, integrating the second term by parts. 

d2M = 1[[ (61B)2-(qxjE)*61B]dV.  2 (2.21) 

The equilibrium BE@) is stable to small disturbances if S2M > 0 for all q(x )  satisfying 
(2.6). Clearly therefore, in order to find a useful criterion for stability, we need to place 
a bound on the magnitude of the second term of the integral in (2.21). There are two 
procedures that we may follow, the first of which is the more straightforward, and 
the second of which is more naturally related to the corresponding Euler-flow stability 
problem considered in the next section. 

Procedure A 
First note that, from the Schwarz inequality, 

(2.22) 

Secondly, we seek the (non-trivial) displacement q l (x )  satisfying (2.6) which minimizes 
the ratio 

l(81B)2 dV [[V x (q x BE)I2 dV 

j ( q  xjE)2 dV j [ q  x (V x BE)I2 d V 
A{rt(x)I = - - (2.23) 

for fixed BE@). To this end, let q = ql(x) + 6q(x) where 6q is a (virtual) displacement 
which also satisfies (2.6); then ql(x)  is determined by the variational statement 

~ ~ { [ V x ( q ~ B ~ ) ] ~ - A ~ [ q x  (VxBE)I2}dV= 0, (2.24) 

where A, is a Lagrange multiplier. Hence 

s{V x (q  xBE)*V x (SqxBE)-Alq x (V x BE)*6q x (V xBE)}dV = 0. (2.25) 
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Integrating the first term by parts and using the boundary conditions n .  BE = n - q  = 0 
on 3 9  (a procedure that will be used repeatedly in what follows), and rearranging, 
gives 

ISq.{BE x [V x V x (q x BE)]-A,(V x BE) x [a x (V x BE)]}dV = 0. (2.26) 

Since this holds for arbitrary solenoidal Sq, it follows that the minimizing q = ql(x)  

BE x [V x V x (BE x a,)] + h,(V x BE) x [a, x (V x BE)] = V !Pl (2.27) satisfies 

for some scalar field Y,(x). Moreover, when this equation is satisfied, together with 
the boundary condition q l - n  = 0 on a 9 ,  scalar multiplication of (2.27) by 1, and 
integration over 9 shows that 

A{rt,(x)} = A,, (2.28) 

so that A, is real and positive, and is determined u ~ q u e l y  by ql(x). 
It now follows from (2.21)-(2.23) and (2.28) that 

S2M 2 +(l-h;i) (S1B)2dV. 1 (2.29) 

Hence if A, is the smallest strictly positive eigenvalue of (2.27), then A, > 1 implies 
that S2M > 0 for all non-trivial displacement fields q(x) ,  i.e. that the magnetostatic 
equilibrium is stable. 

Procedure B 
Instead of q x jE in (2.21 ), we may use the solenoidal part of q x jE defined by 

(q X j E h  = a X j E  + V$, 
where q5 is chosen so that 

(2.30) 

V * ( q  ~ j ~ ) ~  = 0, n * ( q  ~ j ~ ) ~  = 0 on a 9 .  (2.31) 

These conditions imply that $(x) (=  ${q(x)} is the linear functional of q (unique up 
to an additive constant) determined by the Neumann problem 

VZ$ = - ~ . ( q x j ~ ) ,  %=-n*(qxjE)  ona9 .  (2.32) 
an 

sVq5.S1BdV = V*($S'B)dV = q5q*S1BdS = 0, (2.33) I I Since 

it follows from (2.21) that 

(2.34) 

Now we may put a bound on the second term as in Procedure A. First 

and secondly, we seek the non-trivial displacement q2(x)  which minimizes the (new) 
ratio 

j [ V  x (q x BE)I2 d V 
A =  (2.36) 

j ( q  X j E ) ;  d F.' . 
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The corresponding variational problem is now 

6 s( [V x (q x BE)], - A, (q  xjE),Z} d V = 0, (2.37) 

or, using (2.30), 

where 64 = ${Sq(x)}. Note now (cf. 2.33) that 

(2.39) 

so that (2.38) may be manipulated to the form 

J6q.(BE x [V x V x (q x BE) ] -Az jE  x (q  x j E + V $ ) } d V  = 0. (2.40) 

Hence, in this case, the minimizing q = q2(x)  satisfies 

B E  x [V x v x ( B E  x q,)] +AzjE x (q XjE+V(b,) = V Y ,  (2.41) 

for some scalar field Y,. Again it is easily verified that 

A{tl,(x)} = A,, (2.42) 

so that A, is real and positive; moreover, now 

a2M 2 a( 1 - A;i) (2.43) 

so that if A, is the smallest strictly positive eigenvalue of (2.41) then A, > 1 is sufficient 
for stability of the magnetostatic equilibrium to small disturbances. 

Note that, by virtue of (2.39) with 64 replaced by 4, 

J(q X j E E  dV = 1 [ ( 9  (v4)21 d V.  (2.44) 

s [ V  x (q, x BE)], dV 

J[h2 X A 2  - (v42)21 d V 

j [ V  x (7, x BE)I2dV 

J(q2 xjE)Z d v 
Hence A, = 2 2 A1, (2.45) 

with equality only when q, = ql and V 4 ,  = 0. Hence the condition A, > 1 for 
stability is stronger than the condition A, > 1. However, it is the form (2.34) that 
will be more useful for comparison with the Euler-flow stability problem, to which 
we now turn. 

2.1. The case of force-freeJields 
The particular case in which the magnetic field BE satisfies the 'force-free ' condition 

V x BE = aBE (2.46) 

has been studied by Molodensky (1974), who showed that, if the disturbance is 
confined to a region in the interior of 9 of maximum diameter L then, in the notation 

of the present paper, r 
S 2 M >  t(l-I.IL) (S'B),dV J, (2.47) 
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(a result that may be deduced from (2.21)), so that the field is stable provided 

L < 1aI-l. (2.48) 

The case when the disturbance extends to the boundary 3 9  is not covered by 
Molodensky’s analysis. In two further papers, however, Molodensky (1975, 1976) 
examined the particular case of a spherical domain, and generalized the inequality 
(2.47) to cover the case when a is a function of position satisfying BE*Va = 0. 

A particular force-free field is treated in $6 of the present paper, and is shown to 
be stable to all disturbances, irrespective of lengthscale. 

3. Stability of analogous Euler flow 
Consider now the analogous Euler flow uE(x)  satisfying (1.2). As shown by Arnol’d 

( 1 9 6 6 ~ )  the stability of this flow to perturbations governed by the Euler equations 
of inviscid flow may be investigated through consideration of the kinetic-energy 

K = -  u2dV. (3.1) 

invariant 

2 ‘i 
Under perturbations of the flow uE(x) ,  the vortex lines are frozen in the fluid (not 
the streamlines as would be required if the u* B analogy were to persist for the 
stability problem), and the energy K is stationary for u = uE with respect to such 
perturbations (see below). The question of stability leads naturally to consideration 
of the second variation S2K of the energy with respect to the initial displacement field 
q(x ) .  If K is a minimum? with respect to all admissible perturbations (i.e. if S 2 K  is 
a positive-definite functional of q)  then u remains in a ‘neighbourhood’ of uE in the 
sense that the norm 

remains constant, and the flow is then (in this sense) stable. 
We consider then a displacement field q ( x )  as in 52, satisfying (2.6). Regarding this 

as a virtual instantaneous displacement which carries the vortex lines of the 
equilibrium field uE in a ‘ frozen-in’ manner, the perturbed vorticity field, by analogy 
with (2.9), is given by 

I I u - u ~ ~ ~  = IK-KEli x IS2Kli  (3.2) 

u = o E ( x ) + S ’ u + S 2 u + 0 ( 7 3 ) ,  (3.3) 

where Slu = v x (q x u E ) ,  (3.4) 

620 = $7 x (q x &!I). (3.5) 

Again we suppose that the displacement is non-trivial in the sense that S1w + 0. By 
uncurling (3.3), the corresponding perturbed velocity field is 

u = U E ( X ) + S 1 U + S 2 U + O ( ? j ~ ) ,  (3.6) 

where 694 = (q x (3.7) 

62u = +(q x S1u)s, (3.8) 

where the suffix s denotes ‘solenoidal part of’ defhed as in (2.30)-(2.32). 

t Arnol’d (19001~) argued that stability is ensured if K is either a minimum OT a maximum with 
respect to small perturbations; but in a subsequent paper (Arnol’d 1966b, see also McIntyre & 
Shepherd 1985) he showed that in the two-dimensional case, maximality of K is not in fact sufficient 
for stability. We discuss this point in the context of cylindrically symmetric flow in 95 of this paper. 
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The corresponding expansion for K is then 

where 

K = KE+S1K+S2K+O(r3),  

S'K = u ~ * S ~ U  dV, I 
S2K = 1 2 S [ ( & ~ U ) ~  + 2uE Saul d V. 

(3.9) 

(3.10) 

(3.11) 

These expressions were obtained by Arnol'd (1966a). It is easily shown that, by virtue 

SIK = 0, (3.12) 
of (1.2), 

i.e. the kinetic energy is indeed stationary with respect to admissible variations about 
the equilibrium state u = uE. This is theorem 1 of Arnol'd (1966a). 

Consider now the second variation S2K. This may be readily manipulated to the 

S 2 K = -  [ ( ~ / x w ~ ) E - ( ~ x w ~ ) ~ * V X  (qxuE)]dV (3.13) 
form 

using q*n = 0 on a 9 .  Remarkably, the second term in the integral is the exact 
analogue of the second term in (2.34), under the analogy uE c) BE, aE -jE. The first 
term is, however, different from the first term in (2.34), and it is this difference which 
permits instability of the Euler flow, despite the fact that the analogous magnetostatic 
equilibrium is stable. 

2 'S 

If we make the substitutions 

BE+uE, jE+coE (3.14) 
in (2.34), we obtain 

PM = - { [ V X ( ~ X U ~ ) ] ~ - ( ~ X O ~ ) ~ ' V X ( ~ X U ~ ) } ~ V  
2 'I (3.15) 

and of course, if the analogous magnetostatic equilibrium is stable, then S2M 2 0 for 
all q. From (3.13) and (3.15), we have 

S2K+ deM = t I [ V  x (q  x uE) - (q x oE)J2 dV > 0, (3.16) 

a result that is of some interest, although unfortunately it does not give sufficient 
information about S2K to discriminate between stable and unstable states. 

If we apply the argument of Procedure B in $2 to place an upper bound on the 
second term of (3.13), we find (contrast (2.43)) that 

P K  2 { ( q x o E ) ; - h ; : [ V  x (qxuE)12}dV, (3.17) 'I 
where A, is still the smallest eigenvalue of (2.41). Again the statement (3.17) is not 
particularly helpful because it appears to be impossible to convert the integrand to 
a form that is positive definite except for certain very simple choices of uE(x) .  This 
difficulty (which was recognized by Arnol'd 1966a) is perhaps no more than a first 
indication that, in general, three-dimensional Euler flows of any complexity have an 
associated P K  that is indefinite as regards sign, so that the invariance of K places 
no constraint on the growth of perturbations to the flow. We shall evaluate S2K 
explicitly for certain basic flows in the following sections in order to test this assertion. 
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4. Two-dimensional situations 
The case of two-dimensional Euler flow was treated by Arnol’d (1965a, 1966u, b,  c), 

and has recently been further explored by McIntyre & Shepherd (1985, and references 
given therein). We shall focus attention here on the difference between the magneto- 
static problem and the Euler-flow problems, as reflected in the expressions (2.21) 
and (3.13) for S2M and S2K. 

Consider first the magnetostatic situation, with a two-dimensional field of the form 

so that 

The domain 9 is the cylinder $9, x { z : O  < z < l}, where $9, is a domain of the 
(z, y)-plane. Suppose that the boundary a 9 ,  consists of an  exterior closed curve C, 
and (possibly) interior closed curves G,, C,, . . . . Then the boundary condition on BE 

j E  = v x BE = (0, 0, - P A ) .  (4.2) 

becomes 
A = A ,  onCi ( i = O , l , 2  ,... ), (4.3) 

where each A, is constant. Note that the A, remain constant under frozen-field 
displacements, since the flux of B across any curve joining Ci to C, remains constant. 
The basic equilibrium condition (1.1) is satisfied provided 

V2A = f ( A )  
for some functionf(A). 

We consider a two-dimensional displacement field 

(4.4) 

where y9 = ~i on Ci (i = 0, 1 ,  2, ...) (4.6) 
with each $, constant. I n  order to evaluate S2M, we first write (2.21) in the equivalent 
form 

S 2 M = -  2 [ ( S ’ B ) 2 - ( q ~ B E ) . V ~  (qxjE)]dV. (4.7) ‘I 
Now 

so that 

Moreover, writing 

where, obviously, G = 0 on a$9,, we have 

V x (q x j E )  = - (q*V)jE = - (q x BE)f’(A), 

(q  x B E ) * V  x (q  x j E )  = - (11 x BE)’f’(A). 

11 x B = (090, G(z, y)), 

(4.8) 

(4-9) 

(4.10) 

J[V x (q  x B)I2dV = (VG)2dzdy 3 qi (4.11) J 
where qi is the smallest eigenvalue of the problem 

(V2 + q2)  G = 0, G = 0 on ag2. 
Hence from (4.7), 

S2M 2’s (&+f’(A)) (q  x B),dzdy, 
2 962 

(4.12) 

(4.13) 
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and so a sufficient condition for the equilibrium to be stable to two-dimensional 
disturbances is 

f ‘ (A)  > -90 throughout Qz. (4.14) 

Consider now the analogous Euler flow, for which 

(4.15) 

where A satisfies (4.3) and (4.4). Hence from (3.13), 

a2K = [ (q  x oE)i + (q  x uE)2f’(A)] dz dy, (4.16) 
9 9  

and so a sufficient condition for stability is 

!’(A) > 0 throughout Q2. (4.17) 

This is theorem VI I  of Arnol’d (1966a). Clearly the condition (4.17) implies not only 
stability of the Euler flow, but also (since (4.14) is then also satisfied) stability of the 
analogous magnetostatic equilibrium. 

Note that the second term of the integrand in (4.16) involves only q and not the 
gradient of q ;  this is a special feature of the two-dimensional case which permits the 
extraction of a sufficient condition for stability to all two-dimensional disturbances. 
In the three-dimensional case (for which wE*Vq =+ 0) this simplification is absent. 

5. Cylindrically symmetric situations 

and the analogous Euler flow is instructive is that in which 
A second situation in which the comparison between the magnetostatic equilibrium 

or analogously 

in cylindrical polar coordinates ( r ,  8,  z). We take 9 to be the domain {r  < r < r2 ,  
0 < z < zo>. Consider the stability of these states to axisymmetric disturbances, 
represented by the disturbance field 

Calculation of SaM and PK is straightforward, and we simply state the results : 

(5.4) 

and 
P K  = 2x I I q ;  [$ (w)(] r+ dr dz. (5.5) 

Hence the magnetostatic equilibrium is stable to disturbances of the form (5.3) if 

a condition that may be obtained in an elementary manner by considering the change 
in magnetic energy associated with interchange of two flux tubes. 
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As regards the Euler flow (5.2), note that if 

d 
-((rm), > 0 
dr (5.7) 

then S2K > 0 for all axisymmetric disturbances, and so the flow is stable to such 
disturbances. This is the well-known Rayleigh stability criterion. 

As mentioned in the footnote in $3. Arnol’d’s (1966~)  original assertion was that 
stability is assured if either a2K > 0 or S2K < 0 for all admissible perturbations. The 
example considered here shows that the second alternative cannot be generally 
correct. The reason for the failure of the original Arnol’d argument in the case when 
K is maximal for u = uE is that the energy released in perturbing the flow to an 
adjacent state is then available to augment the disturbance and so to perturb the 
flow still further - and so on. This cannot happen when K is minimal for u = uE, and 
the condition that S2K is positive-definite is therefore a correct sufficient condition 
for stability.? 

Note that, if b(r)  is replaced by v(r )  in (5.4)’ then from (5.4) and (5.5). 

SaM+a2E=47c 7; ; rdrdz>O, (5.8) ss 9 (“>P 
consistent with (3.16). 

6. Stability of Beltrami fields 

force-free (or Beltrami) field 
A particular, fully three-dimensional, magnetostatic equilibrium is provided by the 

BE = (B, cosaz+B, sinay, B, cosux+B, sinuz, B, cosay+B, sinax), (6.1) 

for which jE = v x B E  = -aBE. (6.2) 

The topological structure of this field has recently been explored by Dombr6 et al. 
(1986) : provided B, B, B, =k 0,  the lines of force are space-filling in a subdomain gC 
of R3 which is connected from one ‘periodicity box’ of the field (6.1) to its 
neighbouring boxes, like a three-dimensional web. In this section we address the 
question of whether the magnetostatic equilibrium (6.1) is stable; in the following 
section, we consider the same question for the analogous Euler flow. 

It is known (Woltjer 1958) that minimization of magnetic energy subject only to 
the single constraint of conservation of global magnetic helicity leads to a force-free 
field satisfying (6.2) for some constant u. However, it is not the case that every such 
force-free field is the result of such a minimization procedure; and in order to test 
the stability of a given force-free field such as (6.1), we need to evaluate the integral 
(2.21) for S2M, to see whether or not it is positive-definite. The question has been 
considered by Arnol’d (1974) who concluded on general grounds that the field (6.i) 
is indeed one of minimum energy. We shall here provide explicit verification of this 
result. 

t Dr David Andrews (private communication) has shown that if the procedure of Amol’d (19654 
is followed for the axisymmetric flow considered here, then the condition (5.7) is again obtained 
aa the condition that a certain function P J  be positive definite, but that if d(rv)2/dr < 0, then PJ 
is not in general negative definite. This conclusion is entirely consistent with the above discussion. 
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First we write (6.1) in the more compact form 

BE = Bn eian'x 
n 

where n takes the values & 1, f 2, & 3, and 

B-, = B,*, a_, = - a  n, IQnI = 14. (6.4) 

q = Z qm eikmax, (6.5) 

where l - m  = l m ,  * k- ,  = -km. (6.6) 

The general disturbance 11 admits a Fourier representation 

m 

Now, using (6.2), and replacing the volume integral in (2.21) by a space-average, 
denoted (. . .), we have 

6'M = ((V x A).(V x A + a A ) ) ,  (6.7) 

where A = q x BE = Z A, eiKAeX, 
A 

where A denotes the ordered pair (n, m), and 

Now evidently 

and 

XA = a,+km, A,  = 11, x Bn. 

v X A +d = (iKA X A,+aA,) eiKAeX, 
A 

irc, x A, +aAA = k, x (qm x B,) +aqm x Bn 

(6.9) 

(6.10) 

= irc, x (qm x B,) -iqm x (an x B,) 

= i[Vm (km 'Bn 1 - a n  (Bn. tlm 11. 
using (6.2) 

Hence from (6.7), 
(6.11) 

2a2M = Z [KA x (rz xB,*)I.[~m(km'Bn)-an(Bn*lm)l 
A 

= Z: { I~ml '  Ikm *BnI ' -4(an V: [Re (Bn k ,  ) B,*I. lm) * (6.12) 

The second term sums to zero by virtue-of the reality conditions (6.4), and we are 
left finally with 

6'M = t Z: l~m121km*Bn12; (6.13) 

n, m 

n ,  m 

since this expression is positive for all non-trivial 1, the stability is proved.? 
This means that if the equilibrium (6.1) is disturbed in some way, then the fluid 

system will execute oscillations, which will be damped if viscous dissipation is present, 
about this equilibrium. Let us now analyse these oscillations on the assumption that 

7 A referee has pointed out that  derivation of (6.12) from (6.7) is correct only if all the ir, are 
distinct. It is however not difficult to show that if an+km = ak+kk (i.e. xA =xi )  then the 
corresponding contribution to PM is 

so that the conclusion following (6.13) is unaltered. 
The referee haa also pointed out that (6.12) in fact follows directly from (2.21) without the need 

to invoke the Beltrami property (6.2) ; this means that all space-periodic magnetostatic equilibria 
are stable to all disturbances of the form (6.5). 
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the scale L of the disturbance q ( x ,  t )  (now regarded as a function of t  as well as x) 
is large compared with the scale 01-l of BE. From (2.9), the perturbed magnetic field 

B = BE+&lB+O(q,), (6.14) is 

and the associated Lorentz force may be written 

(6.15) 
a i a  
axj 2 ax, 

C~XB) ,  = - ( B , B j ) - - - P .  

The disturbance on the scale L will be driven by this Lorentz force, averaged over 
the 'inner' scale a- l ,  i.e. 

(6.16) ( j x  B), = a - ( B , B j ) - - - ( P ) .  i a  axj 2 axi 

Now at leading order, jE x BE = 0, so we need only concern ourselves with the term 

#(B,  B j )  = (B,ES1Bj)+(BF61BZ), (6.17) 

of order q in (6.16). The first variation of (B ,  B j )  is 

(6.18) 
since the average is over the scale a-l on which g(x) is 'slowly varying'. Hence, since 

if follows from (6.17) that 
a71 S1<B, Bj) = Cijkl 9 

k 

where Ctjkl = ( B f  B t )  + (BY B t )  * 

Note that, from (6.l), 

(6.19) 

(6.20) 

(B,EB,E)=- . Bi + Bi : 1.  (6.21) 

The relationship (6.19) is a stress-strain relationship characteristic of an anisotropic 
elastic medium; the second term in (6.16) is accommodated through pressure 
variations in the incompressible fluid. 

The 'isotropic' situation (B,  = B, = B3) is particularly simple. In this case (6.19) 
reduces to 

1 Bt+Bi 

2 [ B: + Bi 

where ME = +((BE)". The associated contribution to (6.16) is 

and the equation of motion of the fluid on the outer scale L is 

a211 
at2 

p - = $MEV2q + viscous term, 

(6.22) 

(6.23) 

(6.24) 
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where p is the fluid density, assumed constant. The medium evidently supports waves 
which propagate with wave speed C, given by 

(6.25) 

These waves are of course damped if due account is taken of viscosity. 
We may note that the method described here may be readily adapted to describe 

oscillations on a large scale L of an arbitrary stable magnetostatic equilibrium BE@) 
with scale 1 4 L. For example BE(x)  might be a spatially complex field, statistically 
homogeneous and isotropic with respect to space averages (the end-product of the 
relaxation process described in M85, starting from an initial field Bo(x) with these 
same properties). Such oscillations are still evidently described by the wave equation 
(6.24). 

7. Instability of Beltrami (ABC) flows 
Consider now the Euler flow analogous to (6.1), viz. 

uE = ( U ,  cosaz+ U,  sinay, U ,  cosax+ U, sinaz, U,  cosay+ U ,  sinax). (7 .1)  

The associated vorticity field is 
mE = -auE. (7.2) 

This is the flow described as the ABC-flow by Dombr6 et al. (1986), after Arnol’d 
(1965b), Beltrami (1902) and Childress (1970). The flow, having maximal helicity, is 
a natural candidate for dynamo action, and has been studied in this context by 
Galloway t Frisch (1984) and Moffatt & Proctor (1985). 

In order to consider the stability of the flow (7.1), we should first evaluate S2K, 
as given by (3.1 3). It will be sufficient to consider the particular displacement field 

q = vo (cos kz, sin kz, 0), 

V x 11 = - kq. 

262K = a2[(A2) -((V4)2)]+a(A*V x A), 

(7.3) 

(7.4) 

(7.5) 

where k is a constant (positive or negative); this satisfies 

Using (7.2), and again replacing the integral by a space-average, (3.13) becomes 

where now A = q x uE with components 

(7.6) 1 A,  = T ~ (  U,  cos a y  + U ,  sin ax) sin kz, 

A, = -qo( U ,  cosay+ U ,  sinax) cos kz, 

A, = vo[ ( U ,  cos az + U,  sin az)  cos kz - ( U,  cos a z  + U ,  sin ay)  sin kz]. 

and 4 is the space-periodic field satisfying 

V24 =-V*A=-qo(a-k)[U, cosaxsinkz 

+ U ,  sin ay cos kz + U ,  COY (a - k) z ] .  (7.7) 

i.e. 
lr3qo cos(a-k . )z  

To(a - k, { Ul cos ax sin kz + U ,  sin ay COY kz} + . (7.8) 4 = a 2 + k 2  a-k. 
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From these expressions, we may easily calculate 

(A2) = 7 i m q +  w+aq1, (7.9) 

(7.10) 

( A - V x A )  = - k i ( k + a ) ( q + q ) ,  (7.11) 

( a - k ) 2  
((v4)2) + 41:- (v"+u",)+k:vz,, 

and 

and hence, from (7.5)' after simplification, 

(Q+ U 3 a k 3  
a2 + k2 

P K  = -hi (7.12) 

Since this expression changes sign as k changes sign, it is indefinite as regards sign, 
and so Arnol'd's ( 1 9 6 6 ~ )  sufficient condition for stability is not satisfied. This does 
not necessarily mean that the flow is unstable, although the energy released by the 
perturbation, when a k  > 0, is available to augment the disturbance, and so instability 
may reasonably be anticipated in this case (following the clue provided by the 
Taylodouette situation discussed in $5 above). 

To investigate this question further, let us adopt the 'mean-field' approach used 
in $6, i.e. suppose that the scale of q(x )  is large compared with the scale of uE(x), 
i.e. that 

k < a. (7.13) 

The perturbed velocity is given by (3.6), i.e. 

u = UE + (q x OE)s + O(y2), (7.14) 

and we aim to calculate the Reynolds stress (ut uj) to order q, the average now being 
over the scale a-l To this order, we have 

where 
V24' = -V*(qxmE)  = aV*(qxuE) ,  

(7.15) 

(7.16) 

i.e. where, by comparison with (7.7),  

4 ' = -  a#, (7.17) 

and (i wj) denotes repetition of the previous term with i and j interchanged. 
Consider first the term 

OE)j) = -acjkl (u$u,"> q k -  (7.18) 

Evaluating the various components with uE andqgiven by (7.1) and (7.3) respectively, 
we find that the only non-zero terms are those for which 

( i , j )  = ( 1 , 3 ) ,  (3, I ) ,  ( 2 , 3 )  or (3, 2)' (7.19) 
and, for these, 

(u,E(q x w ~ ) ~ )  + (1 t+ 3) = $( U: - Q) yo sin kz, 1 
<UF(rlXOE)3)+(2t+3) = - ia(Q- q)qocoskz.)  

(7.20) 

Consider now the term 

(7.21) 



Magnetostatic equilibria and Euler flows of complex topology. Part 2 375 

Again, using (7.1) and (7 .8) ,  we find that the only non-zero terms are the four given 
by (7 .19) ;  and for these 

Combining these results with (7.20), we find from (7.15) 

- ak2 
( U l  us) = a2+k2 q vo sin kz, 

and 
ak2 

( U 2 U 3 )  = a2+k2 r ] ,  cos kz. 

Now the effective force driving the large-scale perturbation is 

i.e. 

where KC is the kinetic-energy matrix with components 

(7.22) 

(7.23) 

(7.24) 

(7.25) 

The factor ak3(a2+k2)-' appearing in (7.24) is the same as that appearing in the 
expression (7.12) for PK; thus, asexpected, the force (7.24) which drives the large-scale 
perturbation is intimately related to the energy ( - PK)  that is available to augment 
this perturbation. The equation of motion that is compatible with this description 
is 

(7.26) 

where q(x,  t )  is now regarded as a (slowly varying) function of x and t .  Although this 
equation is not rigorously established by the above argument (which fails to take full 
account of the perturbation of the large-scale vorticity field by the small scale-velocity 
uE), its structure is indicative of the instability that may be expected when PK < 0. 

We have carried out the above calculation for the particular displacement field 
(7 .3) .  However the form of (7.26) now permits us to generalize the result to an 
arbitrary large-scale perturbation q(x ,  t ) .  For, using (7 .4) ,  and expanding (7.26) in 
powers of ( k / a ) 2 ,  the equation may be written 

+ . . .) V2(V x q),, (7.27) 

a form that is presumably quite general. 
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The isotropic situation, in which 

K t  = jKESii, (7.28) 

is again particularly simple. If we retain only the leading term in (7.27), we then have 

(7.29) 

which may be contrasted to (6.24). In  this approximation, any helical mode for which 

(7.30) 

(7.31) 

and is clearly unstable if a k  > 0, consistent with the remarks following (7.12). 
It is apparent therefore that the flow (7.1) is unstable to  large-scale helical 

disturbances having the same sign of helicity as the basic flow. This result is of great 
interest, since i t  indicates a mechanism for an ‘inverse cascade ’ of helicity from large 
wavenumbers to small wavenumbers. There is every reason to believe that the same 
mechanism will be present for an arbitrary Euler flow (the analogue of the arbitrary 
magnetostatic equilibrium conceived in the final paragraph of $6). A similar point 
of view is adopted by Moiseev et al. (1984) in a discussion of turbulence with helicity, 
in which compressibility effects are regarded as important. 

8. Conclusions 
I n  this paper, we have discussed in general terms criteria for the stability of an 

arbitrary magnetostatic equilibrium and for the stability of the analogous Euler flow. 
A sufficient condition for stability of the magnetostatic equilibrium is 

S2M > 0 (8.1) 

for all admissible displacement fields q ( x ) ,  S2M being defined by (2.14) or (2.21) 
(Bernstein et al. 1958). A sufficient condition for stability of the analogous Euler flow 
is given by Arnol’d’s (1966~)  condition 

S2K > 0, (8.2) 

S2K < 0 (8.3) 

for all admissible q, where S2K is defined by (3.11) or (3.13). The alternative condition 

for all admissible q has been shown by the explicit examples of $5 and 97 to be 
inapplicable, as recognized in the context of two-dimensional flows by Arnol’d 
(1966 b).  If S2M and S2K are evaluated for the same basic equilibrium field, we have 
shown (3.16) that, quite generally, the inequality 

is satisfied. 
The two-dimensional situation has been briefly discussed in 94. I n  this situation, 

there is a considerable simplification in that S2K may be expressed explicitly in terms 
of q alone (and not involving the spatial gradient of q) .  This same simplification occurs 
also for the cylindrically symmetric situation considered in $5 .  I n  both cases, this 
permits the extraction of a useful sufficient condition for the stability of the flow 

S2M+S2K > 0 (8.4) 
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((4.17) in the two-dimensional case, and (5.7) in the cylindrically symmetric case). 
The corresponding conditions for the magnetostatic problem are given by (4.14) and 
(5.5) respectively. It is noteworthy in the cylindrically symmetric problem that if the 
velocity component v(r )  (see (5.2)) is given by a power law 

v(r )  = A+, (8.5) 

- l < h < l .  (8.6) 

then both the flow and the analogous magnetostatic equilibrium are stable provided 

For fully three-dimensional basic states, both d2M and d2K depend explicitly on 
Vq as well as q. For the magnetostatic problem, a sufficient condition for stability 
may still be obtained on the basis of the inequality (2.29); but for the Euler-flow 
problem, the inequality (3.17) cannot be so exploited, since it still involves q in a 
non-trivial way. 

The Beltrami field (6.1) (and analogously (7.1)) has been adopted as the prototype 
of a fully three-dimensional equilibrium. It has been shown in $6 that this magnet- 
ostatic equilibrium is stable to all disturbances which have a Fourier representation 
(6.5), and that, observed on a scale large compared with the scale a-l of the 
equilibrium field, the medium exhibits an elastic stress-strain relationship (6.19). This 
means that waves of large wavelength can propagate through the ‘lattice’ provided 
by the field (6.1), the wave-speed being given (in the isotropic case) by (6.25). 

The situation is very different as regards the stability of the Euler flow (7.1). Here 
d2K, evaluated for the particular disturbance (7.3), is given by (7.12), and is indefinite 
as regards sign. Hence conservation of energy places no constraint on the possible 
growth of frozen-field disturbances. A large-scale disturbance q ( x ,  t )  generates a 
Reynolds stress (ui uj) whose components are given by (7.23), and the divergence 
of this Reynolds stress provides the force that excites the large-scale motion (an effect 
conveniently representated by equation 7.26). In the isotropic case, this disturbance 
equation takes the form (7.29), which suggests that the flow (7.1) is unstable to 
large-scale helical disturbances with the same sign of helicity as the basic flow. Since 
the factor k3(a2+k2)- l  in (7.26) is a monotonic increasing function of k, the growth 
rate of the instabilities is stronger for larger k (within the limits permitted by the 
inequality (7.13)). This suggests that the presence of helicity in a flow such as (7.1),  
or more generally in a turbulent flow, may be conducive to the development of an 
inverse cascade towards progressively larger lengthscales. The Kelvin-Helmholtz 
type of instability, which is always associated with any vortex sheets that may be 
present in an Euler flow, must provide simultaneous energy transfer to smaller 
lengthscales. Which of the two mechanisms dominates in a turbulent flow will no 
doubt depend on the level of mean helicity in the energy-containing eddies of the 
turbulence. 

I am greatly indebted to Professor V. I. Arnol’d for a valuable discussion concerning 
the background to this paper; also to Drs D. G. Andrews, M. E. M. McIntyre, 
M. R. E. Proctor and D. ter Haar for their helpful and constructive comments. 
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